skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Palmieri, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Advanced manufacturing techniques such as Additive Manufacturing (AM) have grown rapidly in major industries such as aerospace, automotive, and biomedical device manufacturing. Biomedical industry has benefitted immensely from AM because of its flexibility in design and its rapid production cycle. Powder bed processes are the major production technique for metal-based AM implants. This paper serves as a comprehensive review on the research efforts being made using AM to develop new patient centered medical devices. This review focuses on AM of the most common metals for biomedical applications, Magnesium alloys, Cobalt-Chromium alloys, pure Titanium, Titanium alloys. Several different aspects are discussed including biocompatibility and osseointegration, application of specific metals in different types of implants, their advantages and disadvantages, mechanical properties in comparison to bone, and their production technologies. Regulatory and quality assurance hurdles that are facing new innovations made using AM are discussed. 
    more » « less